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Abstract-This paper investigates numerically the effect of natural convection on the solidification of 
laminar fluid flow in the thermal entrance region of a horizontal isothermally cooled tube. The theoretical 
solution asr,umes that the Prandtl number is large, and the variation of the liquid-solid interface is gradual 
in the axial direction. For the liquid phase, a vorticity stream function equation is formulated and solved 
by a boundary vorticity method. The significance of the natural convection effect is found to depend on 
the local Rayleigh number. A circular liquid-solid interface is assumed with its center moving up gradually 
away from the tube axis. The growth of the solid shell is strongly influenced by the superheat ratio 1, the 
Rayleigh number and the axial position. The theoretical analysis yields the profiles of liquid-solid interface, 
pressure drop and heat transfer coefficient with varying axial location for the cases of 0 Q Ra Q 10’ and 
0.1 < 1 < 10. The numerical predictions agree fairly well with the existing experimental data for the heat 

transfer rate, the pressure drop and the liquid-solid interface. 

1. INTRODUCTION 

In the past, a limited amount of research has been 
done on the sub_iect of liquid solidification inside 
ducts. Solidification involving the phase-change pro- 
cess is referred to as the moving boundary problem. 
Usually, those problems encountered in engineering are 
seldom examined fully analytically. The difficulties 
arise from the influence of the liquid-solid interface 
on the flow and heat transfer characteristics of the 
liquid phase, partiNsularly when the solidification pro- 
cess is accompanied by the effect of natural convection 
in an internal duct, A literature survey reveals that 
very little research has been carried out regarding the 
effect of natural convection on the flow and heat trans- 
fer characteristics (during the internal solidification. 

In 1968, Zerkle and Sunderland [l] presented an 
experimental and analytical investigation of the effect 
of solidification on the laminar flow heat transfer and 
pressure drop in a tube with constant wall tempera- 
ture. They conducted an experiment using water as a 
working fluid in a circular tube of 1.5 in diameter and 
used a parabolic axial velocity profile to obtain the 
theoretical heat transfer coefficients. Values of the 
Rayleigh number were of the order of 106-10’. A dis- 
crepancy of loo%, based on the theoretical value, was 
found between the theoretical and experimental heat 
transfer rates. The:y suggested that the difference was 
attributed to the ellrects of natural convection. Using 
the empirical formulation developed by Oliver [2], a 
semi-empirical method taking natural convection into 
account was presented. &sik and Mulligan [3] 
employed a slug flow assumption in an analysis of the 
transient solidification. Since the slug flow con- 
vectively enhances the near-wall heat transfer, the pre- 

dieted heat transfer coefficients were greater than the 
ones using a parabolic velocity profile found by Zerkle 
and Sunderland [ 11. Depew and Zenter [4] performed 
an experiment for the laminar flow heat transfer and 
the pressure drop with freezing at the wall. A test 
section of 0.786 in diameter (L/D = 28.3) was used 
with values of the Rayleigh number reaching 105-106. 
Similarly, due to the effect of natural convection, the 
heat transfer rate was 5&80% higher than that using 
the parabolic velocity assumption. It was also found 
that the pressure drop was extremely sensitive to the 
wall temperature and a considerable variation may be 
found. 

Considering a gradual development of the axial uni- 
form velocity to a fully developed one, Hwang and 
Sheu [5] presented a theoretical and experimental 
investigation of liquid solidification in the combined 
hydrodynamic and thermal entrance flow in a circular 
tube with a uniform wall temperature. An experiment 
using water as a working medium was carried out to 
verify the theoretical results. Two double-pipe heat 
exchangers with small inner-tube diameter of 0.95 cm 
for suppressing the natural convection effects were 
employed. The theoretical solution assumed a quasi- 
steady condition, gradual axial variations in the 
liquid-solid interface and a significant radial velocity 
component. A reasonable agreement between their 
theoretical curves and experimental data was 
observed. Mulligan and Jones [6] conducted an exper- 
iment on the heat transfer and pressure drop in an 
isothermal horizontal tube of diameter 1.45 cm with 
internal solidification in the thermal entrance region. 
The experimental apparatus was designed to make the 
Graetz number achieve the range of significant natural 
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NOMENCLATURE 

a tube radius [m] Greek symbols 

; 
specific heat of liquid [w kgg’K_‘] 

; 
thermal diffusivity [m’ s-‘1 

tube diameter = 2a [m] thermal expansion coefficient, [K-‘1 
e dimensionless distance between centre 6 dimensionless liquid phase radius, 

of circular liquid core and tube axis +)/a 
9 gravitational acceleration [m s-*1 i dimensionless vorticity 
Gr Grashof number = gfi(r, - TJa’/v* rl dimensionless radial coordinate in 

based on tube radius solid phase, r/a 
Gr, Grashof number = g/3( T, - Tr)D3/v2 r/i, q,,(4) dimensionless inner and outer 

based on tube diameter boundary of solid respectively 
k thermal conductivity [W m-‘K-‘1 VI(~) present location of solid formation 
Nu Nusselt number = 2h ra(z)/k 0, 0, dimensionless temperature in liquid 
rs> P pressure in mainstream and cross- and solid respectively 

stream momentum equations L super heat ratio = 
respectively [N m-‘1 k,(T, - 7’r)lMTr- r,) 

P, P dimensionless pressure in mainstream 5 dimensionless axial 
and cross-stream momentum distance = (4zlDPr Re) 
equations P density of fluid [kg me31 

P* dimensionless pressure drop = II, dimensionless stream function. 
2(&J -3lP4 

Pr Prandtl number, v/cc Subscripts 
q, q* dimensional and dimensionless heat D diameter 

transfer rate f freezing point or fully developed 
q* = q/naZwopc(To - Tf) condition 

r, 4 cylindrical coordinates [ml, [rad] 1 liquid 
R, C$ dimensionless cylindrical coordinates, 0 inlet 

R = r/ra(z) S solid 
ra(z) interface radius [m] W wall. 
RaD, Ra Rayleigh numbers = PrGr,, PrGr 

respectively Superscript 
Re Reynolds number = w,,D/v present location/present state. 
T, T,, T, liquid, solid and wall temperatures 

Kl 
WO main flow velocity at inlet [m s-l] Symbols 
U, v, w velocity components [m s-l] V* dimensionless Laplace operator = 
U, V, W dimensionless velocity components {(l/R)(a/aR)[R(a/aR)l 
z, Z dimensional and dimensionless axial +(l/R’)(~‘/~~‘)~. 

distances, Z = (z/a Pr Re). 

convection effect. It is shown that the Oliver’s cor- 
relation [2] of combined forced and free convection is 
applicable when L/D is significantly greater than 50. 
The article concluded that the correlation is more 
accurate when the presence of a solid phase thickness 
is taken into account. In order to correlate properly 
the solidification data involving the natural convec- 
tion, the quantity Gr Pr L/D, multiplying the square 
of the local dimensionless interface radius, was 
suggested. 

Recently, the effect of natural convection on the 
laminar flow heat transfer and ice formation in an 
isothermal horizontal tube with freezing have been 
examined experimentally by Hirata and Hanaoka [7]. 
They correlated the average Nusselt number with a 
modified Oliver’s empirical formula, implying that the 
effect of natural convection on NM is controlled by the 

dimensionless parameter, Gr Pr. Experimental data 
reveal that the mean Nusselt number and the thickness 
of the ice shell are increased with the increase in the 
Rayleigh number. Some interesting photographs of 
ice formation with and without the effect of natural 
convection were also taken. With a negligible natural 
convection, the flow passage of the liquid phase is 
almost circularly formed with its center lying on the 
axis of the tube. Increasing the Rayleigh number, the 
cross-sectional shape of the flow passage is also nearly 
circular with its center moving upwards away from 
the axis of the tube because of the effect of natural 
convection. 

Although the liquid solidification in a horizontal 
tube has been studied experimentally for decades, no 
theoretical solution with the effect of natural con- 
vection is available in the literature. The difficulty 
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Insulated 
at z<O 

Constant Wall Secondary flow 

computed liquid-solid 
interface from Doint 0 

assumed cirbular liquid-solid 
interface with centero’ 

(b) 
Fig. 1. Physical model and coordinate system. 

mainly comes from the complexity of the natural con- 
vection flow structure in the liquid phase and the 
resulting irregularity of the liquid-solid interface. This 
paper attempts to examine numerically the effect of 
natural convection on the solidification of laminar 
pipe flow in the thermal entrance region of a hori- 
zontal isothermally cooled tube. The theoretical solu- 
tion employs the large Prandtl number assumption 
and considers a small axial variation of the circular 
liquid-solid interface with its center moving away 
gradually from the tube axis. With these assumptions, 
one may expect to obtain a reasonably accurate solu- 
tion constructed from the available solution in a cir- 
cular pipe for the liquid phase and the quasi-steady 
state solution for the solid phase. 

2. THEORETICAL ANALYSIS 

Consider the laminar mixed convection in the ther- 
mal entrance region of a circular tube. Solidification 
occurs immediately on the tube wall with a uniform 
temperature below the freezing temperature of the 
fluid. Due to the secondary flow induced by natural 
convection, the thickness of the solid is not cir- 
cumferentially uniform. As depicted in Fig. 1, its 
cross-sectional shape was found to be nearly circular 
[7] with its center moving gradually upwards along 
the flow direction at least in some particular regimes 
that will be discussed later. The assumption of a cir- 
cular shape simplifi.es the problem to one with a fully 
developed axial flow and 3D parabolic governing 
equation [8]. 

A. Liquidphase 
The following assumptions are made in the theor- 

etical analysis for the liquid flow bounded by the 
liquid-solid interface. 

1. The flow is laminar and incompressible. 
2. The fluid physical properties are constant. 
3. Axial conduction and viscous dissipation are 

negligible. 
4. Boussinesq approximation is valid. 

Without loss of the generality, the pressure dis- 
tribution in the liquid core of the duct can be expressed 
as 

P(z) +p(r, 9% z) 

where the first term indicates the pressure distribution 
for the fully developed flow, and the second term is 
the pressure deviation from the fully developed flow. 

For facilitating the analysis in the liquid phase, 
the solid phase and the interface, one introduces the 
following dimensionless transformations 

R=L 
ra(z) ’ 

& =!!!? 
62 ’ 

U= 
uv U 

MT0 - TM2 = 2w,(Gr/Re)cS2 

v= vv 

Bg(T,, - T,)ra2 = Zw,(Gr/Re)S’ 
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P= P P 
dh(To - Tdra = p Grd(2wo/Re)’ ’ 

p= p 
pPr(2w32 

where m(z) is the radius of the assumed circular 
liquid phase; 6 is the dimensionless radius ratio of 
m(z) and a ; wb = w,/6* signifies the axial varying 
mean how; Re = Zw,a/v is the Reynolds 
number, Gr = flg(TO - T,)a3/v2 is the Grashof number. 
The r- and &direction characteristic velo- 
city /Ig(TO - Qra’/v and characteristic pressure 
ppg(TO - T&z can be obtained readily by assuming 
the same order of magnitudes of the pressure term, 
viscous term and buoyancy term. It is also noted that 
the transformation is carried out by considering the 
gradual movement of the center of the liquid core, i.e. 
the small eccentricity of the liquid core compared with 

The governing equations become : 
Continuity equation : 

.(,W+R~;~)=O (1) 

Z-momentum equation : 

R-momentum equation : 

G,.63 .!?!+!!!!_r 

( 
aR R a+ R > 

++rW[!!$+(2U-R~);;]= -g 

+v’li-~-jg~+Bcos~ (3) 

&momentum equation : 

+V2V-z+L1-0sin~ (4) 
R* R2 84 

energy equation : 

With the small Grashof number and large Prandtl 
number assumptions [8], the inertia terms caused 
by the effect of natural convection in momentum 
equations (2)-(4) and the pressure term with 
coefficient (Gr/Pr)(d’/Re*) will vanish. The coefficient 
(1 /S) (dd/dZ) means the percentage change of liquid- 
phase radius per unit dimensionless axial length. Since 
this coefficient is frequently small during the solidi- 
fication, the terms with the coefficient can be dropped 
from equations (l)-(5). Therefore, the components U 
and V do not affect the main flow component W which 
is fully developed before entering the cooled section. 
Consequently, the axial variations of axial velocity i.e. 
a(RW)/aZ can be neglected from continuity equation 
(1). This reduces equations (l)-(5) to the following form. 

Continuity equation : 

8(RU) av 
aR +zJ=O (6) 

Z-momentum equation : 

dpr 
o= -,,+v*wr 

W, = l-R* 

R-momentum equation : 

(8) 

&momentum equation : 

0= -+$+V2V-$+$$-f7sin$ (9) 

energy equation : 

(10) 

Combining equations (8) and (9) by a cross differ- 
entiation of the pressure terms, and introducing the 
dimensionless stream function $ and vorticity [, the 
final govering equations in dimensionless form for the 
computation are : 

V’i = - ( ae . i ae 
zsinf$+ R Gcos4 

1 
(11) 

V’$ = i (12) 
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larger than that in the circumferential direction. 
Therefore, one could reasonably assume that the heat 
transfer in the radial direction is dominant. Therefore 

1 (13) 
equation (16) can be reduced to 

where 

&‘!Y at il = vi, 0, = 1 ; r~ = qO, 19, = 0. (17) 
Rac#l' 

v= _3! 
aR' Thus, the temperature distribution in the solid phase 

Both the vorticity equation (11) and the stream func- is 
tion equation (12) are of the elliptic type and energy 
equation (13) is of the parabolic type. A numerical e = lnr?-lnh 

(18) 
step by step marching technique [8] will be employed ’ In?,-In?, 

for the liquid-phase solution. It is found that the effect where 
of natural convection depends on the local Rayleigh 
number Ra d3 = /3g(T,, - Tf)ra3/va defined based on v0 = ~~(4) = -ecos4+Jz&. (19) 

the radius of the assumed circular liquid phase. These The eccentricity e = e(Z) is the distance of the center 
equations are subjected to the following boundary of circular flow passage to the tube axis. 
conditions : 

C. LiquicCsolid interface 
In the present analysis, a smooth interface is 

assumed and the steady-state condition prevails, then 
W,AZ)=i(R,AZ)=O, O<R<l, the energy balance at the interface is : 

4 =Oandn, Z>O 
(20) 

$(O, 4, Z) = i(0, 4, Z) = 0 o<f$<7r, z>o 

@(R&O) = 1 O<R<l, O<~<X where 

@1,&Z) = 0 Oid<a, z>o I = k(T, - Tr) 

aw, 4, -a k(T,- T,) 

ad =O O<R<l, 4=Oandn, 230. is the superheat ratio. 

(14) Let a:(4) denote the location at which solid is 
formed at the present step. With the effect of natural 

B. Solidphase convection, 111 is no longer circumferentially uniform 

In the present study, the cross-sectional shape of as depicted in Fig. 1. If the axial step size is small 

the flow passage is assumed nearly circular with its enough, vi is pretty much the same as rli, and we can 

center moving upwards away from the tube axis. The obtain q:(4) from equation (20) 

heat conduction in the solid phase between the tube 
wall and the liquidsolid interface is examined here. vi = G#J) = r10 exp 
The equation in the solid phase is ( 1 

n(ae,aR),,, , 
> 

(211 

3 ia ,!zi +l% 1 a co, ( > 
2 

Since we assume a circular solid-liquid interface, the 

(15) new radius of core flow should be figured out at this 
r dr al r2 a@ a2 stage. With q( we could calculate the radius of liquid 

Using the additional dimensionless variables 
flow passage 6 at the present step by 

RP = 
s 

7.n sl’ 

o Id4 (22) 

and the dimensionless variables used for equations (1) and the variation of the location of the center of liquid 

to (5) equation (15) becomes flow passage e’ at the present step can be calculated 
by the method of least square error of the difference 

1 a*0 
ps= 0. (16) 

of 6 and q, by minimizingf(e’) where 
(Pr Re)2 az2 f(e’) = c (qj - 6)2 and ‘]I = ,/$’ - 2$e’ cos 4 + e” 

From the order of magnitude analysis, the con- 
duction terms in the radial, circumferential and axial (23) 

direction could be roughly estimated by the orders of where qj is the distance of the new center to the 
l/(1 -S)*, l/(1 -6)‘n2, and l/(Pr Re)* respectively. In location at which solid is formed at the present step. 
addition, the radial temperature gradient is much The summation of the square error of the difference 
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of 6 and q, means the total error originated from 
choosing a new center of the circular shape. 

If we set (af(e’)/ae’) = 0, we obtain the value of e’ 
that makes the functionfa minimum. The eccentricity 
e of the center of the liquid core to the tube axis is the 
accumulation of e’ at every <. 

The local Nusselt number Nu is calculated as 

Nu = -=- (24) 

The dimensionless heat transfer rate q* from the 
liquid core to the solid phase at a dimensionless axial 
position 5 is 

4 4 c n ae 
q* = =_ -- 

ml* w,pc(T, - Tf) 7l o o aR,=,d+dS ss I 

(25) 

and the dimensionless pressure drop within the tube 
of dimensionless length < is 

fM = 2(p, = 
PW; 

l(j*p,. (26) 

3. THEORETICAL SOLUTION 

The solution of the present problem can be divided 
into three main parts i.e. the velocity and temperature 
distributions in the liquid phase, the temperature pro- 
file in the solid phase and the shape of liquid-solid 
interface. Equations (11) to (14) are the governing 
equations and the boundary conditions for the fluid 
flow in the liquid phase. These equations are identical 
to the equations presented in [8] except the Rayleigh 
number Ru that appeared in [8] is replaced by the 
local Rayleigh number Ra# here. One can refer to the 
work [8] for a detailed solution. The solution of the 
temperature distribution in the solid phase can be 
directly calculated from equations (18) and (19). 

The interface equation (20) needs complete infor- 
mation on the temperature distributions in both the 
liquid and solid phases. After the distribution of the 
liquid-phase temperature is obtained, equation (21) 
gives the interface location q;(b) at the present step. 
To validate the assumption of circular-flow, the radius 
of the liquid-solid interface 6 at the present step is 
derived from equation (22). The eccentricity e of the 
center of liquid-flow is an accumulation of e’ at each 
step derived from equation (23). 

4. RESULTS AND DISCUSSIONS 

Figure 2 shows the variations of the dimensionless 
radius of circular interface 6 with the dimensionless 
axial position 5 for I = 0.1-10 and Ru = O-10’. 
1 = [k,(T, - T,)]/[k,(T,- T,)] is the superheat ratio. 
The solid shell grows faster for smaller 1. When 
1 = 0.1, no appreciable natural convection effect on 
the interface radius 6 is detected for Ru = 0-106. This 

0.8 

0.6 

6 

0.4 

0.2 

0.0 
10 -* 10 -J 10 -< 10 -’ 1 

t 

Fig. 2. Dimensionless radius of the liquid-solid interface. 

is caused by the rapid decrease of 6 and the value of 
local Rayleigh number Rd3, which reduces the effect 
of natural convection. As 2 increases, the slow growth 
of the solid phase makes the local Rayleigh number 
Ru 8 not decrease too much and thus the effect of 
natural convection persists. For 1 = 1 and 5 < lo-*, 
the larger Ru prevents the growth of the solid shell, 
but, as 5 increases, the fluid temperature drops and 6 
decreases more rapidly for larger Ru. This phenom- 
enon is in consistent with the statements of [6] and [7]. 
Reference [6] claims that “natural convection tends to 
reduce the solid phase thickness and correspondingly, 
reduces the pressure drop for all but the very small 
Graetz numbers”. Reference [7] states that “for com- 
bined forced- and natural-convection flow in a tube 
with internal freezing, the mean Nusselt number 
increases and the ice becomes thicker as compared 
with the results without natural convection”. This is 
because a secondary vortex has been generated by 
natural convection [8], which makes hotter fluid near 
the core region move to the cold-wall region. As 5 is 
small, the mixing effect caused by a secondary vortex 
results in a higher temperature of the fluid near the 
wall region than that without natural convection, 
which tends to decrease the thickness of the solid and 
gives a larger 6. As fluid flows downstream, on account 
of the decay of the strength of the secondary vortex, 
cold fluid will have stagnated near the bottom part of 
the liquid core and accordingly solidification will 
occur very quickly there. This phenomenon is more 
significant with larger Ru. 

Figure 3 shows the dimensionless eccentricity e with 
the dimensionless axial position 5 for 1 = 0.1-10 and 
Ru = CL107. The value of e is the distance of the center 
of the liquid core to the tube axis. The liquid core 
moves upwards if e > 0 and vice versa. Without con- 
sidering the effect of natural convection, the value of 
e will be zero. With natural convection, as described 
before, cold fluid could be trapped in the bottom part 
of the liquid core and solidify there. So, the liquid core 
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e 

Fig. 3. Dimensionless eccentricity vs axial distance. 

always moves upwards. For 1 = 0.1 and Ra < lo’, the 
effect of natural convection is negligibly small and the 
value of e is approximately zero. Generally speaking, 
this plot shows that the center of the liquid core first 
moves up to a maximum value then moves down with 
increasing 5. This is probably because of the decay of 
the vortex strength during the last stages of solidi- 
fication with small 6, and the radial heat conduction 
of the solid phase dominates the morphology of solidi- 
fication, which tends to equalize the circumferential 
thickness of the solid. 

Although the present analysis uses the Boussinesq 
approximation and large Prandtl number assumption 
and assumes a circular liquid-solid interface, com- 
parisons of liquid--solid interface between the present 
prediction and th.e experimental water data [7] are 
made in Fig. 4(a)-(e). The large Prandtl number 
assumption can bte valid for water (Pr = 10) [9]. For 
most fluids, a linear variation of fluid density with 
temperature can be acceptably assumed. However, 
for the case of water near its freezing point a linear 
relationship is not justified. The anomalous behavior 
of water results in a rather peculiar convective motion 
when the temperature domain encompasses the 
maximum density point near 4°C [lo]. This produces 
an additional complexity in the behavior of the natural 
convection particular in the internal solidification. For 
example, instead of the familiar unicellular pattern, 
the flow may become bicellular with counter direction 
[ 11, 121. To avoid rigorous treatment of the variations 
of the thermal expansion coefficients p, an estimate of 
the effective /3 of the flow encompassing the whole 
domain between the inlet and outlet should be made. 
If the outlet bulk: fluid temperature is over 4°C a 
mean thermal expansion coefficient based on the mean 
temperature of th(e inlet and outlet bulk fluid tem- 
perature is suggested and substituted for the inlet Ray- 
leigh number to account for the decrease of fi in the 
water flow system. A good reason for this suggestion 

Ran =76300,h=0.4 
(a) 

,------. 
,’ ‘\ 

‘\ 

@ 

0.014 
-____*- 

[=0.0040 

RaD=286000,h=0.76 
Cc) 

Ran=100000,~=1.5 
(b) 

RaD=303000.h=2.8 
Cd) 

Rat,=514000,h=0.7 
(e) 

Fig. 4. Comparison of the experimental and theoretical 
radius of the liquid-solid interface. 

is that a fluid with a large Prandtl number exhibits 
inherent characteristics such as a thinner thermal 
boundary layer of the flow. So the temperature dis- 
tribution of the flow is flatter and most of the region 
is very close to the bulk fluid temperature. Accord- 
ingly, a representative of B estimated from the bulk 
fluid temperature is believed to be accurate. Thus the 
mean p is chosen to represent the effective /I covering 
the whole domain from the inlet to the outlet. If the 
outlet bulk fluid temperature is over 4”C, a rough 
calculation for the relative error of the mean B from 
the effective /I is 

where m, 1, and 2 represent mean, inlet and outlet 
respectively. Note that a small error of no more than 
5% is observed for an inlet water temperature above 
10°C. 

To take account of the effect of density inversion of 
water on natural convection, it is better to use the 
mean Rayleigh number [ 1,471 to exploit the effect of 
natural convection 

Ra 

D 
= gBm(Tm - TW3 

V* 

where T,,, and Pm is measured from the mean value of 
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Nu 

Hwang and La1 
no solidification 

1% -’ 10 -3 10 -2 10 -’ 1 
f 

Fig. 5. Theoretical Nusselt number. 

the inlet and outlet bulk fluid temperature. The mean 
Rayleigh number is substituted for the inlet Rayleigh 
number used in the present study for calculation. It is 
shown that the predicted shapes of the interface plotted 
in Fig. 4 are qualitatively coincident with the exper- 
imental data. For weak natural convection secondary 
flow, i.e. small Rayleigh number, as shown in (a), (b) 
and (c), the cross-section of the liquid-solid interface 
maintains a circular form. It deforms gradually into 
an elliptic shape as the Rayleigh number increases as 
shown in (d) and (e), and the center of liquid core 
moves up much further away from the tube axis. It is 
seen that the confirmation is satisfactory for cases (a) 
and (c) with small Ra and 1. 

Figure 5 shows the variation of the local Nusselt 
number Nu with the dimensionless axial position 5 
for 1 = 0.1-10 and Ra = O-107. The results of Nu 
presented in [8] for the case without solidification are 
also plotted. It can also be seen that the Nusselt num- 
ber increases with the increase in Ra for a fixed 1 or 
with the increase in 1 for a fixed Ra. The strong influ- 
ence of natural convection on Nu is found for Iz = 1 
and 10 when Ra > 106. For /z = 0.1, only a small 
increase of Nu has been found for Ra = 10’. The value 
of 1 shows no effect on NM for Ra = 0. For the case 
of i = 10, the present predictions of Nu are very simi- 
lar to those of Hwang and Lai [8] for Ra = 10’ and 
lo6 in the region of 5 < 10m2. This is because of the 
thin solid shell, which behaves much the same as in 
the case without solidification. When 5 2 lo-* the 
predicted Nu is less than that of Hwang and Lai [8] 
because of the thick solid shell. 

The variation of dimensionless heat transfer rate q* 
with the dimensionless axial position l for 1 = 0.1-10 
and Ra = t&10’ is shown in Fig. 6. It reveals that there 
are significant effects of superheat ratio 1 and Rayleigh 
number Ra on the dimensionless heat transfer rate q*. 
The value of 1 also shows no effect on q* for the case 
of Ra = 0. For 1 = 1 and 10, q* increases with increase 

- A=10 
_ _ _ _ . _ = 1 

--- =O.l 

1.2 

Fig. 6. Dimensionless heat transfer rate. 

Rq) ; h 
-A Zerkie and Sunderland[ I] 

- 1.89*10’- 2.7*10’ : 0.39-1.04 
0 Depew_ and Zenter[4] 

2.57*>0’ - 4.27*loe:0.A85-1.21 
_n Hirata and Hanaoka[ll] 

4*105 ; 0.39-8.3 
-a Hwang and Sheu[5] 

4.53*104 - 1.3*105 
; 0.67-3.01 

0.4 
t 

Ll 
10 -J 10 -L 10 -I 1 

f 

Fig. 7. Comparison of experimental and theoretical heat 
transfer rates. 

in Ra. The enhancement of q* is more pronounced for 
large A, which is similar to the case shown in Fig. 5. 

Comparisons of the predicted q* and the exper- 
imental water data are made in Fig. 7. The ranges of 
operating conditions for Ra, and 3, in the experiments 
[ 1,471 are also listed in this figure. Since the operating 
range is wide, the mean values of Ra, and 1 are used 
in the calculations. From this figure, one sees that the 
agreement between the present prediction of q* and 
the experimental data are quite satisfactory. It is worth 
mentioning that the value of Ra, claimed in [6] was 
overestimated since both the mean fluid temperature 
(T,,,) and inner tube diameter (D) are smaller than 
those given in ref. [4]. 

The variations of the dimensionless pressure drops 
P* with the dimensionless axial position 5 for 1 = 0. l- 
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Fig. 8. Theoretical pressure drop. 
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Fig. 9. Comparison of experimental and theoretical pressure 
drop. 

10 and Ra = &lO’ are depicted in Fig. 8. For cal- 
culating the dimensionless pressure drop the value 
of Pr should be assigned. In order to compare the 
predicted results of P* with the experimental data 
presented in [4, 61 Pr = 10 is selected for calculation 
of equation (26) in Figs. 8 and 9. When Pr is fixed, 
the pressure drop increases with the decrease in 6. 
From this figure, one sees that for a fixed Ra, P* 
increases with the decrease in 1. 

Comparisons of the predicted P* with the exper- 
imental water data [4, 61 are plotted in Fig. 9. The 
operating ranges Iof these experiments are also listed 
in this figure. Prediction has been plotted by four 
curves. Since P* is very sensitive to A, lower and upper 
limits of 1 are used to calculate P* while the Rayleigh 
numbers RaD are kept fixed to a mean value. Solid 
lines represent the prediction for the case of [6] and 

dashed lines for the case of [4]. Figure 9 reveals that 
the predicted P* is very close to the data of [6] while 
a somewhat large deviation from the results of [4] is 
observed. 

5. CONCLUSIONS 

1. The present investigation successfully solves the 
solidification of laminar pipe flow in the thermal 
entrance region of a horizontal isothermally cooled 
tube under the effect of natural convection. The theor- 
etical solution employes the large Prandtl number 
assumption and considers a gradual axial variation 
of the circular liquid-solid interface with its center 
moving away from the tube axis. With these assump- 
tions, one is able to obtain a reasonably accurate 
solution constructed from the available solution in a 
circular pipe for the liquid phase and from the quasi- 
steady-state solution for the solid phase. 

2. For smaller superheat ratio A( = 0. l), the value 
of local Rayleigh number Ra d3 decreases faster 
because of the rapid growth of the solid shell, which 
suppresses the effect of natural convection on the 
dimensionless radius of circular interface 6, while pro- 
nounced difference in 6 for various Ra can be noticed 
for cases of larger 1 (= 1 and 10) for which the effect 
of natural convection persists. The center of the liquid 
core moves upwards with the effect of natural convec- 
tion. This is confirmed by experimental observation. 

3. There are significant effects of 1 and Ra on the 
Nusselt number NM and dimensionless heat transfer 
rate q*. The values of Nu and q* increase with the 
increase in Ra for the cases of larger A (= 1, lo), but 
no obvious difference is shown for 1 = 0.1. The value 
of L shows no effect on Nu and q* for Ra = 0. The 
dimensionless pressure drop P* increases with 
decrease in 1 for a fixed Ra and increases with increas- 
ing Ra for a fixed 1. 
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